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Abstract

This chapter explores the benefi ts of restructuring search spaces and internal represen-
tations so as to make search more effi cient. It begins by providing a formal defi nition of 
search, and proposes a method for shifting search between low- and high-dimensional-
ity problem spaces. Consideration is given to how  learning shapes the representations 
that help people search effi ciently as well as on constraints that people face. Some 
constraints are considered biases necessary to make sense out of the world; others (e.g., 
working  memory) are taken as both “limiters” to be overcome and “permitters” that 
make learning in a fi nite amount of time possible at all. Further constraints on search 
are tied to the physical structure of the world. The chapter concludes with a discussion 
of social search, where communication can promote exploration and exploitation in an 
environment that often consists of other agents searching for similar solutions.

Introduction

In 1975, Allen Newell and Herbert Simon received the Turing award for their 
contributions to computer science and psychology. In large part, they were 
being honored for their work in artifi cial intelligence. In their acceptance ad-
dress, Newell and Simon (1976, 1987) described how they approached prob-
lems in  artifi cial intelligence by studying the natural intelligence of people. 
These studies of humans and machines led them to conclude that the key to 
intelligence was the ability to manipulate symbols. They believed that all intel-
ligent behavior, whether human or machine, arises from composing symbols 
into entities called symbol structures that can be manipulated by prescribed 
sets of operators. Some operators can construct new structures, whereas others 
modify or destroy existing ones. The combination of symbol structures and 
the corresponding operators defi ne what Newell and Simon called a symbol 
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system. These symbol systems were at the heart of their physical symbol sys-
tem hypothesis: “A physical symbol system has the necessary and suffi cient 
means for general intelligent action” (Newell and Simon 1987:293).

Their claim with the physical symbol system hypothesis (or symbol system 
hypothesis; Newell 1980) was that symbol systems not only support intelli-
gent behavior, they are essential for the display of intelligent behavior. They 
viewed the symbol system hypothesis as the guiding principle that should or-
ganize research on human and  artifi cial intelligence. For Newell and Simon, 
symbol systems were as fundamental to the study of intelligence as the theory 
of plate tectonics is to geology or germ theory is to the study of disease. This 
is a radical view, but one that was proposed as a hypothesis to be tested. They 
were, after all, empiricists at heart. The hypothesis that intelligent behavior 
rests on symbol structures fl owing one into the next, transformed by operators, 
led them to see problem solving as search through a space of symbol structures 
that represent possible solutions to particular problems. Thus, intelligent be-
havior was a form of search in a problem space of symbol structures.

Their belief in the fundamental importance of search led to their second 
guiding principle, the heuristic search hypothesis: “A physical symbol system 
exercises its intelligence in problem solving by search; that is, by generat-
ing and progressively modifying symbol structures until it produces a solution 
structure” (Newell and Simon 1987:230). Their general problem solver (GPS) 
algorithm worked by transforming one solution into the next until a dead end 
(requiring back-tracking) or goal was reached. Just as a rat might search for 
food in a fi eld by moving from patch to patch, GPS moved in an abstract solu-
tion space from symbol set to symbol set. They argued that  problem solving 
must depend on “heuristic (i.e., knowledge-controlled) search” (Newell 1980), 
because intelligent behavior can be observed even when problem spaces are 
so vast that they cannot be exhaustively searched. The importance of basic no-
tions of symbol systems and heuristic search in our report is a testament to the 
lasting legacy of Newell and Simon’s formalization of search processes.

We start by providing a formal defi nition of search. Inspired by results 
showing that high-dimensionality spaces imply that good solutions should be 
well connected to each other, we propose a method for shifting search between 
low- and high-dimensionality problem spaces. Turning from formal methods 
to people, we consider the ways in which learning shapes the representations 
that help people search effi ciently. Thereafter we discuss constraints that peo-
ple face: some are considered biases necessary to make sense out of the world; 
others (e.g., working  memory) are taken as both “limiters” to be overcome 
and “permitters” that make  learning in a fi nite amount of time possible at all. 
Further constraints on search are tied to the physical structure of the world. 
Finally, we turn to  social search, which complements heuristic search by sup-
plementing internal cognitive constraints on search within an individual with 
the constraints provided by an environment that often consists of other agents 
searching for similar solutions.
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A Formal Defi nition of Search

To aid concrete discussion of iterative  search algorithms, we defi ne  search 
problems in a formal way that is consistent with Newell and Simon’s notion 
of symbol systems. A search problem is given by a triplet (S, f, W), where S is 
the considered search space, f: S → R is a function assigning objective values 
to the elements of S (representing all possible solutions), and W is a set of 
constraints.

To illustrate this, let us consider the well-known  traveling salesman prob-
lem (TSP). Input is given by a set of n cities {1, …, n}, and between each pair 
of cities, i and j, there is a distance, di,j. A tour in the TSP problem visits each 
city exactly once and returns to the origin. We focus on two variants:

1.  Satisfi cing version: Is there a tour of cost at most k?
2.  Optimization version: Find a tour of minimal cost.

To fi t the TSP problem into our search framework, the search space S is given 
by all permutations of the n cities (i.e., ordered tours through all the cities, as 
opposed to the locations of the individual cities themselves in physical space). 
The cost of a permutation π is then computed by starting at the fi rst city in the 
permutation, π(1), moving to the second city in the permutation, π(2), then to 
the third, π(3), and so on. The cost of this permutation is given by the sum of 
the distances traveled to construct the tour:

cost ., ( ) , ( ) , ( ) ,π π π π π π π π π( )= + +…+ +( ) ( ) −( ) ( ) ( )d d d dn n n1 2 2 3 1 1 (20.1) 

Let us now consider optimization problems tackled by iterative search algo-
rithms. The task is to fi nd an element x* in S which minimizes the function 
value:

x x
x S

* argmin f .= ( )
∈

(20.2) 

In the TSP example, we would search through the space S for a tour that has 
minimal cost. To apply iterative search algorithms to optimization problems, 
three steps are necessary:

1. Choose a representation of the elements in the search space S.
2. Defi ne a  fi tness function (might be different from f ) that assigns fi tness 

values to points in the search space S.
3. Defi ne operators that construct, from a set of solutions, a new set of 

solutions. The combination of the search representation in step (1) and 
the operators gives a structure to the search space in terms of how local 
neighbors in the search space are related to each other.

This framework fi ts many successful algorithms for optimization, such as local 
search and simulated annealing. Furthermore, many successful bio-inspired 
algorithms (e.g.,  evolutionary algorithms, ant colony optimization, and particle 
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swarm optimization) fi t into this framework. They differ from each other in 
the representation chosen and the operators used to produce new solutions. 
As we have seen, possible solutions for the TSP problem can be represented 
by permutations of the n cities. Furthermore, the fi tness assignment can be 
straightforward by taking the length of the tour that is encoded by the permuta-
tion. Given a permutation of the input elements, we next have to think about 
what operators could be used to construct a new solution.

A well-known operator for solving the  TSP problem is the state-of-the-art 
2-OPT operator. It takes the current tour, chooses two edges of the tour (i.e., 
connections between cities), and removes them, yielding three disconnected 
part-tours. The parts are then reconnected in a different order (by two new 
edges) such that a new tour is obtained. Using a local search procedure, one 
would start with an initial solution and try all possible 2-OPT operations until 
a better permutation has been found. If no improvement is possible, the algo-
rithm stops. Note that 2-OPT defi nes a neighborhood for each point (tour) in 
the search space in terms of all the possible new arrangements of three parts of 
that tour. The size and the structure of such neighborhoods are crucial for the 
success of these algorithms.

Once a neighborhood in a local  search algorithm is defi ned, we can address 
the problem of becoming trapped in local optima. By choosing a large neigh-
borhood, local optima become less likely. In the extreme case, one might think 
of defi ning the neighborhood of a solution as the set of all other solutions in 
the entire search space, which by defi nition would include the globally optimal 
solution. However, it is obvious that this would lead to neighborhoods that are 
usually not searchable in an effi cient way, as the number of elements in them 
would be exponential with respect to the given problem size.

Considering how to choose good representations and operators, and hence 
neighborhoods, in our setting can be done by examining the  fi tness landscape, 
defi ned by the search space S, the function f to be optimized, and the chosen 
neighborhood N: S → 2S. We can think of the fi tness landscape as a graph 
whose elements of S are nodes that have certain values, and with an arc from x 
to y if y is an element of the neighborhood of x, that is, y Î N(x). Fitness land-
scapes are often visualized by plotting the surface of fi tness values over the 
search space. Solutions that are neighbors are close to each other, that is, they 
can be easily reached using the operators from (3) above. Because the fi tness 
function f often produces similar values for nearby solutions, one can observe 
local and global optima in the fi tness landscape.

High-Dimensionality Fitness Spaces

Finding the global optimum requires a search algorithm to avoid being trapped 
in any one of possibly very many local maxima. Recent work done within 
the context of fi tness landscapes defi ned on genotype spaces suggests that 
landscapes with extremely high dimensionality have certain features that may 
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simplify searching the space of solutions. To illustrate this work, consider the 
following model. Assume that the search space consists of genotypes each 
comprising a very large number L of diallelic loci (i.e., positions at which they 
can have one of two different alleles). Each genotype has L one-step neighbors 
(single mutants). Let us assign fi tnesses randomly and independently to each 
genotype so that they are equal either to 1 (a viable genotype) or 0 (inviable 
genotype), with probabilities P and 1 − P, respectively. In general, viable geno-
types will tend to form connected networks—that is, they will be connected by 
steps of a single mutation. For small values of P, there are two qualitatively 
different regimes: (a) subcritical, in which all connected components of the 
genotype network are relatively small (which takes place when P < Pc, where 
Pc is the percolation threshold), and (b) supercritical, in which the majority of 
viable genotypes are connected in a single giant component, which takes place 
when P > Pc (Gavrilets and Gravner 1997). A very important, though counter-
intuitive, feature of this model is that the percolation threshold is approximate-
ly the reciprocal of the dimensionality of the genotype space: Pc ≈ 1/L, and thus 
Pc is very small if L is large (see Gavrilets 2004; Gavrilets and Gravner 1997). 
Therefore, increasing the dimensionality of the genotype space, L, while keep-
ing constant the probability of being viable, P, makes the formation of the 
giant component unavoidable. (Similar fi ndings hold when the model is gener-
alized to use continued fi tness values; see Gavrilets and Gravner 1997).

In the literature, the connected  networks discussed in the previous para-
graph are often referred to as neutral networks, where the word “neutral” means 
that there is no difference in  fi tness between the genotypes in the network. In 
certain applications, small differences in fi tness are allowed and the resulting 
networks are called “nearly neutral.” The earlier work on neutral and nearly 
neutral networks in multidimensional fi tness landscapes concentrated exclu-
sively on genotype spaces in which each individual was characterized by a 
discrete set of genes. However, many features of biological organisms that are 
actually observable and/or measurable are described by continuously varying 
variables such as size, weight, color, or concentration. A question of particular 
biological interest is whether (nearly) neutral networks are as prominent in a 
continuous phenotype space as they are in the discrete genotype space. Recent 
results provide an affi rmative answer to this question. Specifi cally, Gravner et 
al. (2007) have shown that in a simple model of random fi tness assignment, 
viable phenotypes are likely to form a large connected cluster even if their 
overall frequency is very low, provided the dimensionality of the phenotype 
space L (i.e., the number of phenotypic characters) is suffi ciently large. In fact, 
the percolation threshold, Pc, for the probability of being viable scales with L 
as 1/2L and thus decreases much faster than 1/L, which is characteristic of the 
analogous discrete genotype space model.

Earlier work on nearly neutral networks was also limited to consideration 
of the direct relationship between genotype and fi tness. Any phenotypic prop-
erties that usually mediate this relationship in real biological organisms were 
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neglected. Gravner et al. (2007) studied a novel model in which phenotype 
is introduced explicitly. In their model, the relationships—both between gen-
otype and phenotype as well as between phenotype and fi tness—are of the 
many-to-one type, so that neutrality is present at both the phenotype and the 
fi tness levels. Moreover, their model results in a correlated  fi tness landscape in 
which similar genotypes are more likely to have similar fi tnesses. Gravner et 
al. (2007) showed that phenotypic neutrality and correlation between fi tnesses 
can reduce the percolation threshold, making the formation of percolating  net-
works easier.

Overall, the results of Gravner and colleagues reinforce the previous con-
clusion (Gavrilets 1997, 2004; Gavrilets and Gravner 1997; Reidys and Stadler 
2001, 2002; Reidys et al. 1997) that extensive networks of genotypes with 
approximately similar fi tnesses are a general feature of multidimensional fi t-
ness landscapes (both uncorrelated and correlated, as well as in both genotype 
and phenotype spaces). An important question is whether such concepts could 
inform internal search over cognitive representations. If so, they would sug-
gest that moving to higher-dimensional search spaces could facilitate internal 
search by allowing the system to escape from local search optima.

High- and Low-Dimensionality Search

As discussed by Marshall and Neumann (this volume), choosing an appropri-
ate neighborhood representation can make hard computational search prob-
lems much easier. Intuitively, one may think that reducing the dimensionality 
of a search space would make search easier. In machine classifi cation prob-
lems, however, appropriately increasing the dimension of the search space (us-
ing “kernel methods”) can turn a hard nonlinear classifi cation problem into an 
easy linear one (e.g., Shawe-Taylor and Cristianini 2004), and neural models 
have been proposed which suggest that brains might also do this (e.g., Huerta 
et al. 2004). For internal cognitive search, could dynamic adjustment of the 
dimensionality of the internal space improve search performance? For low-
dimensional search landscapes, a well-defi ned “fi tness gradient” at any point 
in the space exists, but following it can lead a searcher to become trapped in lo-
cal optima. However, higher-dimensional fi tness landscapes have highly con-
nected components (as described in the previous section) with much smaller 
fi tness gradients, allowing neutral diffusion through the entire search space 
without having to suffer large losses in fi tness. The proposal then is that in-
ternal search might fi rst search in a low-dimensional internal space, climbing 
fi tness gradients, until a local optimum is reached and no further improvement 
can be found. This could then be followed by an increase in the dimensional-
ity of the internal space and an episode of neutral diffusion through the space. 
This would, in turn, be followed by a return to the low-dimensional representa-
tion of internal space and a further episode of hill climbing, which may climb 
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a gradient to a new and better local optimum than the one found prior to the 
preceding episode of neutral diffusion. Several iterations of this process could 
be used in an attempt to fi nd successive improvements in the quality of local 
optima discovered.

An approximation of this process can be seen in high-dimensional seman-
tic memory models such as HAL and LSA (Burgess and Lund 2000; Landauer 
and Dumais 1997). These models capitalize on lexical co-occurrence and acquire 
word meaning by bootstrapping conceptual representations via the inductive 
 encoding of statistical regularities in language. In the case of HAL, words are 
represented by vectors, typically with 200–140,000 vector elements, where each 
element corresponds to another word in the input stream that occurred near the 
word being represented. The meaning is thus a representation of the contexts in 
which the word occurred, and input samples can be very large (one billion words 
has been one of the larger language samples). The vectors are formed by encod-
ing weighted lexical co-occurrence values as a window (typically 5–10 words) 
moves along the text calculating the vector values for each target word and the 
words in the window before and after it. Although these models are usually used 
statically (i.e., the vector values for words are extracted after the model passes 
through the entire text), they could be used dynamically, in line with the changing 
dimensionality approach suggested above. Such a model would start small (with 
about fi ve encoded words and hence fi ve vector dimensions) and add dimensions 
(and encoded words) as it encounters each unique word. The resulting model 
would have very sparse dimensionality in that most of the space defi ned by the di-
mensions would be unoccupied. Once the model has experienced a large amount 
of text, dimensionality can be reduced again by retaining the most contextually 
diverse columns. Regardless of the fi nal number of dimensions, both models 
can usually undergo a dimensionality reduction to around 200–300 dimensions 
without losing resolution in their cognitive predictability (e.g., predicting word 
relatedness, semantic priming, typicality effects, and grammatical and semantic 
categorization). Both HAL and LSA have been shown to account for various phe-
nomena in the concept acquisition process (Landauer and Dumais 1997; Li et al. 
2000) and demonstrate the plausibility of dynamically increasing and decreasing 
dimensionality of the space, as needed, to represent the language input.

Representations Learned by Humans and Machines

As the foregoing analysis of fi tness landscapes attests, a central factor for a 
search process is how the search space is represented. Relatedly, in the domain 
of cognitive science there is a history of research showing that representations 
change as people gain experience during search. Prominent examples are when 
people learn how to solve a complex problem or acquire a complex skill, such 
as when one learns how to navigate in a city or learns how to play chess. Studies 
on expert-novice differences in chess consistently show that one important ele-
ment that defi nes chess expertise is whether the person can effectively represent 
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the states of a chessboard to promote inferring the best move. For example, 
expert chess players are often found to have exceptional  memory of chess posi-
tions and are able to  recall them accurately even after a short (< 5 s)  encoding 
time. Exceptional memory, however, is only found when the chess positions 
are meaningful (Chase and Simon 1973b). When chess pieces are randomly 
located on the chessboard, recall accuracy decreases dramatically. This is often 
taken as evidence that experts have more effi cient internal representations of 
the chess positions that allow them to interpret quickly the functional state of 
the game. In other words, extensive experience with the search space (possible 
moves in a chess game) allows experts to reduce the dimensionality of the 
search space, making their search more effi cient than for novices.

Chess playing is also studied extensively in the domain of machine  learn-
ing. In fact, developing algorithms that can beat human chess players is often 
considered a major benchmark test for success in the fi eld of  artifi cial intel-
ligence. One common approach is to compute the optimal depth of win (mini-
mum number of moves to win) for a given state, and use this as a  fi tness func-
tion in the  search algorithm, based on which the computer selects the “best” 
move. Finding the best move often requires extensive search in a very large 
space of possible moves, and it must be done over and over, because the search 
space changes after each move by the opponent. Nevertheless, rapid advances 
in machine learning techniques and computational power have led to machines 
that can beat even the most skilled human chess players. On the other hand, 
the way a computer plays chess is very different from the way in which a hu-
man plays. Specifi cally, it is believed that the search process is much more 
effi cient for humans than computers in the sense that humans consider vastly 
fewer moves. The reduction of the search space through experience is often 
considered the primary reason why cognitive (human) search is more effi cient 
than machine search.

The human ability to develop better representations that facilitate search 
becomes even clearer in cases where the size of the search space is larger than 
it is for chess. For example, while machines can beat a human chess player, no 
machine algorithm has yet been developed to beat expert players of the game 
of Go—an ancient board game for two players that is noted for being rich in 
strategy despite its relatively simple rules. Because Go utilizes a much simpler 
set of rules than chess, the search space becomes much less constrained, thus 
making it diffi cult for a machine to search. On the other hand, expert Go play-
ers, like expert chess players, can learn more effective representations of the 
search space by perceptually recognizing “loosely defi ned” functional states 
through experience, which practically reduces the dimensions of the search 
space they use.

As discussed by Fu (this volume), the way that representations and search 
processes interact is often considered a fundamental aspect of intelligence. The 
discussion above leads to the perhaps paradoxical conclusion that the amount 
of search is not necessarily a measure of the amount of intelligence being 
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exhibited by the agent (human, animal, or machine). What makes search intel-
ligent is not that a large number of search steps are required for reaching the 
target, but that a large amount of search would be required if a requisite level 
of knowledge were not applied by the cognitive system (Newell and Simon 
1976, 1987). While it seems that there is still no deep theoretical explanation 
for the distinction in performance between human experts and machines, there 
are three general conclusions that can be based on the observations. First, some 
part of the human superiority in tasks with a large perceptual component, as in 
chess or even the  traveling salesman problem (MacGregor et al. 2000), can be 
attributed to the special-purpose, built-in,  parallel processing structure of the 
human perceptual-spatial system. Second, many of the tasks in which humans 
excel seem to involve a large amount of  semantic information. For example, 
master-level chess players are estimated to have knowledge of approximately 
50,000 relevant chess patterns. This suggests that experts can substitute recog-
nition for search (at least partially) because these patterns contain an enormous 
amount of information that helps the experts to reduce the search space signifi -
cantly. Finally, there may be a distinction between local and nonlocal use of 
search knowledge (see Hills and Dukas, this volume). Many chess algorithms 
tend to use information gathered during the course of search (we refer to this 
kind of information broadly as “search knowledge”) only locally to help make 
decisions at the specifi c (or neighboring) node where the information was gath-
ered. Hence, the same facts have to be rediscovered repeatedly at multiple 
locations in the search space. Humans, however, are good at taking search 
knowledge “out of context” and generalizing it to apply to a wider range of 
areas. Thus, if a weakness in a chess position can be traced back to a series of 
moves that led to it, then the same weakness can be expected in other positions 
if the same (or similar) series of moves is executed. Indeed, much progress has 
been made in machine learning in this kind of nonlocal use of knowledge to 
improve search. Just how (e.g., mechanistically) humans are able to do so is 
still relatively unknown. However, the importance of choosing the appropriate 
representations seems to be a key factor that infl uences search performance.

In summary, we argue that dimension reduction of the search space by ex-
perience is one critical characteristic of cognitive search that distinguishes it 
from formal methods of search developed by machine learning researchers. 
This type of representational change seems to be the main reason why cogni-
tive search can be more effi cient than machine search. More research is needed 
to uncover how this kind of dimension reduction in the representation of search 
space is accomplished and what neurocognitive mechanisms are involved.

Built-In and Learned Constraints

The importance of constraints for search is strongly supported by both theo-
retical and empirical arguments. Classic work on heuristics has shown that 
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effi cient search depends on the searcher being able to apply operators that usu-
ally bring the searcher closer to its goal. An unbiased or unconstrained searcher 
will typically be unable to fi nd goals in reasonable amounts of time.

Consider the vast space of possible language grammars. Gold and Chomsky 
formally showed that there are too many possible grammars to learn a language 
in a fi nite amount of time, let alone the two years required by most children, if 
there were no constraints on what those grammars might look like (Gold and 
The RAND Corporation 1967; Chomsky 1965). In a related analysis, Wolpert 
(1996) showed that there is no such thing as a truly general and effi cient learn-
ing device. Developmental psychologists have argued that children need to 
have built-in constraints, biases, or implicit assumptions that fi t well with their 
environment (Gelman 1990; Spelke and Kinzler 2007).

One exciting alternative to built-in constraints is that experience with a 
richly and diversely structured world can allow agents to devise some of the 
constraints that they will then use to make searching their world for adaptive 
behaviors more effi cient. While some constraints are surely provided by evolu-
tion, others can be acquired during an organism’s lifetime and are no less pow-
erful for being learned. In fact, acquired constraints have the advantage of be-
ing tailored to an individual’s own circumstances. For example, early language 
experience establishes general hypotheses about how stress patterns inform 
word boundaries (Jusczyk et al. 1999). Children are fl exible enough to acquire 
either the constraints imposed by a stress-timed language (e.g., English) or a 
syllable-timed language (e.g., Italian), but once the systematicities within a 
language are imprinted, children are constrained to segment speech streams 
into words according to these acquired biases. When exposed to new objects, 
people create new descriptions for the objects’ parts and then are constrained to 
use these descriptions to represent still later objects (Schyns and Rodet 1997). 
As a fi nal example, Madole and Cohen (1995) describe how 14-month-old 
children learn part-function correlations that violate real-world events. These 
correlations cannot be learned by 18-month-old children, which suggest that 
children younger than this acquire constraints on the types of correlations that 
they will learn. In all of these cases, constraints are acquired that subsequently 
infl uence how people will search for regularities in their environment.

A search system must have strong constraints on the possibilities it will 
pursue if it wants to fi nd solutions in a practical amount of time, but a consider-
able amount of fl exibility is still needed when a system faces different environ-
ments and tasks. This dilemma can be resolved by again making constraints 
themselves learnable. Kemp et al. (2010a, b) present a quantitative, formal 
approach to learning constraints. Their hierarchical Bayesian framework de-
scribes a method for learning constraints at multiple levels. For example, upon 
seeing several normal dogs, their system would develop expectancies of vari-
ous strengths that a new dog will have four legs, that mammals have four legs, 
and that animals have four legs. Upon seeing a set of both dogs and swans, 
their system would expect dogs to have four legs, swans to have two legs, 
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and, more generally, all animals of a particular species to have a characteristic 
number of legs. This latter hypothesis will in turn help the system to quickly 
fi nd the hypothesis “all beetles have six legs” upon seeing only a single beetle 
exemplar. Representations at higher levels capture knowledge that supports 
learning at the next level down. In this manner, constraints can be learned at a 
higher level that facilitate search for valid inferences at a lower level.

Bayesian approaches are not the only models that can search for constraints 
for further search. Some neural network models provide working examples of 
systems that learn new constraint structures because of the inputs provided to 
them. Bernd Fritzke’s (1994) growing neural gas model provides a compelling 
example of this. When inputs are presented, edges are grown between nodes 
that are close to the input, and new nodes are created if no node is suffi ciently 
close to the input. The result is a graph-based “skeleton” that can aptly accom-
modate new knowledge because the skeleton was formed exactly in order to 
accommodate the knowledge. This skeleton-creating approach appears also in 
“Rethinking Innateness” (Elman et al. 1996), where one of the primary ideas 
is that the existence of modularity does not implicate innateness. Modules can 
be learned through the process of systems self-organizing to have increas-
ingly rich and differentiated structure. Computational modeling suggests that 
the eventual specialization of a neural module often belies its rather general 
origins (Jacobs et al. 1991). Very general neural differences, such as whether 
a set of neurons has a little or a lot of overlap in their receptive fi elds, can 
lead to large-scale functional differences, such as specializing spontaneously 
to handle either categorical or continuous judgment tasks or snowballing into 
“what” versus “where” visual systems (Jacobs and Jordan 1992). Without be-
laboring the details of these models, there are a suffi cient number of examples 
of constraint-creating mechanisms to believe that systems can achieve both 
effi cient and fl exible search routines by learning how to constrain themselves.

Working  Memory Constraints

Beyond imprecise or incomplete knowledge about the search space, biologi-
cal systems face constraints, such as limited working memory capacities, that 
make the actual calculation (and memorization) of the optimal solution to 
many kinds of problems impossible. To help overcome these constraints, hu-
mans employ a variety of easy-to-compute strategies and heuristics. Moreover, 
it appears reasonable to assume that humans create internal representations of 
the problem space (e.g., the environment) that facilitate the search process. 
Memory representations of large-scale environments are often described as be-
ing hierarchically structured with multiple layers of abstraction (e.g., Stevens 
and Coupe 1978). A possible function of this organization is that it reduces 
memory and computation costs when searching for paths between (multiple) 
locations. For example, by using different levels of detail simultaneously (i.e., 
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by using high resolution only for the current surrounding while using coarser 
representations for distant locations), search costs and working memory load 
are reduced.

 Planning a novel route through a familiar environment can be conceptual-
ized as searching for a path through state- or search-space from a given start 
location to a destination. From a computational perspective, such  planning 
tasks become challenging if the environment is large such that many path al-
ternatives are possible and/or if multiple target locations have to be consid-
ered (e.g., when solving the TSP). Wiener et al. (2008) recently studied human 
performance in solving TSPs under conditions that required working memory 
as opposed to conditions that did not tax memory. When working memory 
was required, participants performed better if the optimal solution to the TSP 
required visiting all targets in one region before entering another region. This 
is best described by a planning (search) algorithm that utilizes an abstraction 
of the actual problem space to compute an initially coarse solution that is sub-
sequently refi ned (see also Pizlo et al. 2006). Again, this algorithm operates 
on a reduced search space that represents an abstraction of the actual search 
space, thus reducing working memory load and the computational complexity 
of the problem. We note, however, that  search algorithms which operate on 
abstractions of the actual search space are obviously vulnerable to suboptimal 
or distorted solutions (e.g., direction judgments; Stevens and Coupe 1978) and 
may require replanning during actual navigation (Wiener and Mallot 2003). 
Such additional costs appear to result from the trade-off between the quality of 
the solution and the constraints inherent to the system.

Working memory can be construed not just as a limitation to be overcome, 
but also in some cases as a constraint that may serve important functions 
(Hertwig and Todd 2003). Consistent with this view, Kareev and colleagues 
have suggested that short-term memory limitations can actually benefi t cor-
relation detection (Kareev et al. 1997). They show that smaller sample sizes 
of environment observations amplify correlations, because both the median 
and the mode of the sampling distribution of the Pearson correlation exceed 
the population correlation. As the size of these observed samples is presum-
ably bounded by short-term memory capacity, people with lower short-term 
memory capacity would be expected to consider smaller samples than those 
with higher capacity. The result is that the lower-capacity individuals should 
be more likely to perceive correlations that have been amplifi ed by their more 
limited short-term memory. Kareev found empirical support for this hypothe-
sis, although some questions have been raised about both the theoretical analy-
sis and the interpretation of the empirical results. For example, small samples 
lead to high false alarm rates (Juslin and Olsson 2005), and the advantage can 
only hold if one assumes a decision threshold (Anderson et al. 2005) and rela-
tively large correlations (Kareev 2005). Gaissmaier et al. (2006) suggest that 
the apparent empirical advantage in detecting correlations for those with lower 
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memory capacity may be confounded with an increased likelihood of those 
with higher capacity to explore.

As another example of possible advantages of memory constraints, Elman 
(1991) developed a neural network simulation of a task that a young child 
faces when learning aspects of a language—essentially, searching for a gram-
mar that accounts for the language inputs being heard. For example, the net-
work had to predict number agreement between subject and verb in a sen-
tence, or whether a verb was transitive or intransitive. The network could not 
learn the full underlying complex grammar when trained from the outset with 
“adult” language. However, the network succeeded when its limited “short-
term memory” (realized as windows on the input sentences) was allowed to 
grow gradually. Starting with smaller windows helped the network fi nd the 
statistical regularities across the input sentences. Whether a limited working 
memory also helps people learn a hierarchical organization of spatial memory 
(as opposed to semantic or syntactic memory) is an open question.

Constraints on Physical and Cognitive Search Space Topology

Two of the major goals of this Forum were to explore the relationship between 
search in different domains, especially external “spatial” search and internal 
“cognitive” search, and to investigate how search strategies scale from low- to 
high-dimensional environments. In considering the relationship between ex-
ternal search in the environment and internal search over representations of 
solutions to problems, one might implicitly assume that the primary difference 
is that external search is low dimensional (typically two or three) and internal 
search is high dimensional. We propose, however, that this is not the primary 
distinction between internal and external search. Rather, as we have reviewed, 
the important difference is that representation of the space for internal search 
can vary, both in topology and in dimensionality. It is more diffi cult to change 
representations in external space. For example, it is relatively diffi cult for peo-
ple and ants to build bridges that reduce distances in external space, while in 
contrast we argue that distances between points in a cognitive search space can 
be more easily altered by changes to the representation (e.g., by increasing or 
decreasing the dimensionality of the search space).

In abstract terms, the topology of a search space is defi ned by the neighbor-
hood function that specifi es how points in the search space relate to each other. 
In external space this has a natural interpretation: on the surface of the Earth, 
the neighbors of a particular point in space have an intuitive defi nition, which 
similarly holds for the three-dimensional spaces inhabited by animals able to 
fl y or swim. Animals searching in these environments must move through spa-
tially neighboring points before they can get to other more distant points; they 
cannot teleport. Thus, if an animal wishes to search for something (e.g., food 
or mates at a distant point), it must move through other points to get there and 
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might take the opportunity to search at intermediate points as well along the 
way. In transferring the concept of external search to internal search, however, 
one should realize that the spatial structure or topology of an environment is 
outside the animal’s control, while for internal search, the representation of 
the space, and hence the topology and dimensionality of the space itself, can 
be changed. This could, in turn, affect the diffi culty of a search process in that 
internal space; hence, a useful representation for an internal search problem 
might itself be searched for, or selected, by the animal or by evolutionary pro-
cesses in the “space of possible representations” (Newell and Simon 1976, 
1987).

Animals do have some ability to change the dimensionality of their envi-
ronment. Consider, for example, an   ant colony reducing a two-dimensional 
surface to a network of one-dimensional pheromone trails and manipulating 
the nature of that network to facilitate navigation (e.g., Jackson et al. 2004), 
or a terrestrial animal that increases the dimensionality of its environment by 
acquiring the ability to fl y. Animals may also directly adapt the dimensionality 
of their search to achieve some objective; for example,  switching between trail 
following and more exploratory behavior in the case of ants (Edelstein-Keshet 
et al. 1995) or changing between local terrestrial search and long-distance 
fl ights between areas in the case of a bird or other fl ying animal (Amano and 
Katayama 2009). Nonetheless, an animal’s ability to manipulate the external 
space in which it searches is limited by dimensionality and the basic laws of 
physics. In contrast, internal search spaces should be subject to much less re-
striction, both in terms of dimensionality and topology.

 Social Search

Newell and Simon focused on the intelligence of individuals, but  groups also 
need to act intelligently to search for solutions. A key distinction is between 
group search and individual search with a social component (for an extend-
ed discussion, see Lazer and Bernstein, this volume). Group search involves 
group-level payoff, whereas individual search involves individual-level pay-
off. In both cases, one can still examine the collective implications of indi-
vidual behavior, but the presence of a group payoff potentially reduces the 
confl ict of interest among individuals. Individual success is some function 
of collective and individual components, and the relative magnitude of these 
components. At one end of the spectrum, individual success is purely a func-
tion of group success ( social insects may be closer to this end). In other group 
systems, individual success might be empirically separable from group suc-
cess, or there might be no group component to individual success whatsoever. 
Thus, for example, there might be individual benefi ts to putting less effort 
into foraging, even though the group (and individual) also gains benefi ts from 
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fi nding resources. The general conundrum is that exploration is individually 
costly but offers benefits to the collective (more on this below), so the poten-
tial risk for the group is underinvestment in exploration. How then to achieve 
group search? From a  behavioral ecology perspective, the conditions needed 
for group selection to emerge at the genetic level (e.g., very low levels of ge-
netic mixing) are quite narrow and unlikely to have characterized humans or 
human predecessors. Instead, culture might be a potential avenue for group 
selection because of the speed of cultural relative to genetic change.

Communication in Social Search

The individual-group dimension is actually part of the general question of what 
the structure of payoff interdependence among actors is. While the dominant 
idea of  foraging is that there is an exhaustible resource, creating a potential 
confl ict of interest among actors, there are many examples of other types of 
interdependence. Most notably, there is an array of scenarios where agents 
benefi t from the presence of other individuals. For example, one explanation 
for the existence of cities is the ease with which individuals can communicate 
information (Glaeser et al. 1992).

Another important dimension is how advertent and inadvertent communi-
cation helps coordinate search. Communication, most critically, facilitates ex-
ploitation across agents. Agent A discovers resource X, communicates that to 
Agent B, which exploits resource X. Communication may thus facilitate effi -
cient exploitation of resources, but may also create the social dilemma of over-
rewarding exploiting agents compared to exploring agents. If agents explore 
and what is found remains private until the agent shares the information, then 
reciprocity may be needed to resolve the collective dilemma. If agents explore 
and what is found is clearly visible to all, and it is not possible to exclude other 
agents from consuming the good, then an under-investment in exploration will 
occur. In particular cases, variation in visibility (e.g., some solutions may not 
be visible or possible to copy, while others are) may occur, which would create 
a bias toward search for nonvisible resources.

Communication may also be important in effi cient exploration. Organized 
search may be more effi cient than  uncoordinated search. For example, a group 
search for missing keys can be more effi cient if the searchers look in mutually 
exclusive sets of rooms—but if Agents A and B have no way of communicat-
ing which rooms they have inspected, there is a risk that they both search the 
same room. In addition, copying behavior may allow for more effi cient collec-
tive search by focusing search on promising areas of the solution space (i.e., 
effective exploration sometimes requires effective exploitation).

Often, a contrast is drawn between the emergent patterns of self-orga-
nized groups and groups that are driven  top-down by a leader, rule system, or 
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hierarchical structure (Resnick 1994). What this rhetorical antithesis misses 
is that self-organized groups do elect leaders, form rule systems, and institute 
hierarchies (akin to changing the search space representation as described ear-
lier). Most groups that follow rules are typically self-organized, and the rule 
systems themselves are self-organized. The rules are the tangible products of 
courts, parliaments, congresses, and governments at city, regional, national, 
and global levels. For example, in the absence of an existing governmental 
structure to regulate lobster harvesting effectively, the harvesters themselves 
created a structure (Acheson 2003). Rules and norms (their less explicit cous-
in) are complex systems in their own right, no less so than beehives or traffi c 
jams. They do not exist on their own, but rather depend upon supporting struc-
tures for their continuation. They require legal and governmental systems to be 
created, changed, and eliminated (Ostrom et al. 2003).They require monitor-
ing systems (e.g., police) to insure adherence and sanctioning systems (e.g., 
jails) to punish discovered rule violations. Originally unorganized groups will 
propose, vote upon, and live under rule, monitoring, and sanction systems that 
they construct themselves (Janssen et al. 2008; Samuelson and Messick 1995). 
In this manner, groups that face scarce resources are often importantly not 
simple decentralized systems, but rather decentralized systems that spontane-
ously create rule systems that are themselves decentralized.

Humans are not alone in adaptively creating organization structures that 
help them achieve their goals. Some ant species tune their level of egalitarian-
ism to the level of informational uncertainty of individuals within the colony 
(Sueur et al. 2011). When individuals have little uncertainty about the rela-
tive advantages of different resources in their environment, they adopt more 
despotic decision regimes in which group choices are controlled by relatively 
few individuals (for a related point, see Pierce and White 1999). When infor-
mational uncertainty is low, or when decisions must be made quickly, there are 
benefi ts for social search processes that concentrate effective voting power in 
relatively few individuals. As informational uncertainty increases, so does the 
importance of pooling information across many individuals. In related work, 
bee swarms searching for new nesting sites have been aptly modeled as a pop-
ulation of agents that accumulate evidence for alternative choices (Marshall et 
al. 2009; Seeley et al. 2012). Assuming that the colony has adapted to achieve 
at least a certain level of accuracy at discovering the best available nest site, 
this accumulation process involving many individuals minimizes  search time. 
Similarly for human groups, when the complexity of a problem space is low, 
centralized  networks in which a single individual communicates with others 
are effective in a manner that no longer is found as problem complexity in-
creases (Leavitt 1962); but distributed networks become important as the rug-
gedness of a problem space increases (Lazer and Friedman 2007).
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Conclusion

As Newell and Simon famously eschewed disciplinary boundaries, one can 
only imagine how pleased they would be to see how search informs and con-
nects the cognitive, biological, and social sciences today. In this chapter, we 
have described the benefi ts of restructuring search spaces and internal repre-
sentations so as to make searches more effi cient. Whereas Newell and Simon 
focused on the application of heuristics to fi xed and well-defi ned search spaces, 
biological and social systems often engage in higher-level searching for more 
effective representations to make their lower-level searches more effective. 
This can be achieved by either increasing or decreasing the dimensionality of 
internal representations, or by restructuring the representations altogether.

As clever as they were, Newell and Simon could not be expected to predict 
perfectly the developments in science 35 years later. For example, Newell and 
Simon (1976, 1987) thought that mimicking the way people play chess was the 
most promising way forward for chess programs. At the time of their Turing 
award, such programs had only just begun “to compete with serious amateurs.” 
They believed the route computers would take to beat the best human players 
would be to buttress heuristic search with knowledge. In the end, although heu-
ristics certainly played a role in the computer victory over people, Hitech and 
its successor Deep Blue depended more on the “massive” search of game trees 
than Newell and Simon had imagined; a triumph of Moore’s law regarding 
exponentially increasing computer processing power. In their words: “It’s fun 
to be wrong” (Newell and Simon 1987:316). Although they admittedly missed 
the mark with respect to the extent that human-inspired heuristics would solve 
the problems of  artifi cial intelligence, their take on the key role of heuristic 
search for human intelligence does appear to have been largely substantiated. 
As we have reviewed here, human intelligence depends on constraining search 
in a variety of ways. It’s also fun to be right.
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